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Summary. Extremal optimisation is an emerging nature inspired meta-heuristic
search technique that allows a poorly performing solution component to be removed
at each iteration of the algorithm and replaced by a random value. This creates
opportunity for assignment type problems as it enables a component to be moved
to a more appropriate group. This may then drive the system towards an optimal
solution. In this chapter, the general capabilities of extremal optimisation, in terms
of assignment type problems, are explored. In particular, we provide an analysis of
the moves selected by extremal optimisation and show that it does not suffer from
premature convergence. Following this we develop a model of extremal optimisation
that includes techniques to a) process constraints by allowing the search to move be-
tween feasible and infeasible space, b) provide a generic partial feasibility restoration
heuristic to drive the solution towards feasible space, and c) develop a population
model of the meta-heuristic that adaptively removes and introduces new members in
accordance with the principles of self-organised criticality. A range of computational
experiments on prototypical assignment problems, namely generalised assignment,
bin packing, and capacitated hub location, indicate that extremal optimisation can
form the foundation for a powerful and competitive meta-heuristic for this class of
problems.
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1 Introduction

Extremal Optimisation (EO) [6, 8] is a meta-heuristic search technique that has
its origins in the science of self-organised criticality (SOC). SOC has been used
to describe behaviour in systems as diverse as geophysics, economics and biologi-
cal evolution. It is only recently that these concepts have been applied to solving
optimisation problems [6].

This chapter investigates and examines the use of EO for a class of problems
known as the assignment type problems (ATPs). We use these problems as our
benchmark problems as they often have difficult constraints. Initially we look in
detail at how EO selects and performs moves in search space on the bin packing
problem. We then further develop EO to show that with suitable support heuristics
it is capable of producing solutions comparable to those of more established meta-
heuristics.

The remainder of this chapter is organised as follows. Section 2 briefly explains
the idea of SOC while Section 3 gives an overview of the general tenets of EO. Sec-
tion 4 describes assignment type problems (ATPs). Given that there has been little
work done on the analysis of EO’s search behaviour in the literature, a detailed case
study examination of EO transitions on one of the test problems, bin packing, is
undertaken in Section 5. Section 6 shows how EO can be used more generally on
ATPs. A number of topics are addressed that EO potentially needs to help it become
competitive with more established meta-heuristics. These are, specifically, transition
operators, partial feasibility restoration, and population models. Computational ex-
periments across a range of problem types and instances are discussed in Section 7.
Finally, the conclusions and future research directions are given in Section 8.

2 Self-organised Criticality

Self-organised critical behaviour can be observed in systems in which, over long pe-
riods of time, seemingly only small changes take place. However, these small changes
gradually build to a critical state that can eventually trigger large events in a domino
fashion. The most commonly related example of self-organised criticality is the sand
pile model [2]. Adding a grain of sand at a time to the pile builds it up slowly to a
point where the addition of another grain will push its downhill neighbour grains,
which in turn pushes other grains – in effect triggering a sand slide or avalanche.
The pattern of this behaviour is present in a diverse range of natural and artificial
systems, including the flow of rivers, and the formation of mountain landscapes and
coastlines and economic fluctuations in stock markets [4].

There are two important characteristics of self-organised critical systems. The
first is that they do not require fine tuning of parameters to exhibit complex, self-
organised behaviour. The second is that the avalanche magnitude divided by the
log of the time between avalanches of this size is roughly constant and follows a
pattern whereby larger events are exponentially less likely than smaller events. A
good illustration of this is the Guttenberg-Richter Law for the size of earthquakes [2],
an earthquake of size 4 on the (logarithmic) Richter scale will occur ten times more
frequently than an earthquake of size 5.

Our interests in this chapter are the applications of SOC within biological evo-
lutionary systems that can be ultimately simulated in order to provide models for
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combinatorial optimisation. Bak [2] has noted that the concept of survival of the
fittest, or conversely, the selection and elimination of the few most poorly adapted
species in a particular environment, displays the characteristics of SOC. In other
words, there is no central organising agent nor finely tuned system in Nature that
manages the survival or extinction of the species. The latter is referred to as ad-
verse selection [7] and is a property that can be modelled in terms of SOC. The
Bak-Sneppen model [3] represents a simplified system of interacting species. The
underlying purpose of the model is to demonstrate emergent behaviour in evolu-
tionary selection processes. One key simplification is that species are represented
by a single fitness value, which is not derived from a genetic representation of the
species. All species are assigned a fitness value in the range [0, 1], where 0 indicates
the least fit. At each step of the evolutionary process, the species with the lowest
fitness value has this fitness changed to a random value. As in this simple model
there is no structure to a species, this is the biological equivalent to allowing the
original species to become extinct and a new species to take its place.

The model also recognises that species do not exist in isolation. For example,
if a species becomes extinct, the species directly above and below it in the food
chain will be affected. Therefore the neighbours (as defined by a set of lattice or
ring sites) of a species that has changed will have their fitness values updated to
random values as well. After many steps of this process, all species will have had
their fitnesses increased and the probability increases that the species that have
their fitnesses replaced have them replaced with lower values. Again it is probable
that the new worst fitness is one of those just introduced and that the replacement
process will result in a sharp reduction in a neighbour’s fitness. Within a few steps
like this the average fitness of the species collapses, and then the process of the
gradual increase of fitness values begins again. This sequence of events is referred
to as a punctuated equilibrium [3]. That is, apparent equilibrium in the system is
punctuated by avalanches. Such events allow the species to potentially sample all of
configuration space.

This process can be shown with a remarkably simple computer simulation. Al-
gorithm 1 shows Bak-Sneppen’s [4] ring model4 in which each species affects its
two neighbour species. Neighbours are defined in terms of position on the ring. The
values of the worst species on the ring (and its neighbours) are replaced by other
random values each iteration, and the worst fitness of all of the current species
is reported together with the best worst species fitness found in any iteration so
far. Figure 1 shows a typical run of the algorithm. The connected line “envelope”
function represents the highest value of the worst species value found up to that
particular iteration. The jumps from a previous maximum to the next mark the
occurrence of an avalanche. The reason for this can be deduced from consideration
of the distribution of values within the population. For the Bak-Sneppen model,
the population has a uniform random distribution of fitness values between a cur-
rent, lower bound, λmin(t) and 1, as might be represented by values within the
solid outline in the histogram in Figure 2. For the lower bound to “jump” from its
present value, λmin(t) to the value at the upper end of the filled region in the figure,
λmin(t+ 1), all the species that currently lie in the filled region must migrate above
that bound (and the histogram will expand upward to fill the shaded region in Fig-

4 The neighbour of the last species is the first species, and vice versa.
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ure 2.) This evidently cannot be achieved in a single iteration; several iterations will
be required as successive species “cascade” to higher fitness levels.

Fig. 1. The output of a typical run of the SOC algorithm. The connected “line” is
the envelope function. Each point in the graph represents the worst value at that
particular step.

Algorithm 1 The SOC algorithm.
Generate a random vector species in the range [0, 1]
for each generation do

Find the species with the worst/lowest value
Find the neighbour directly below this worst species
Find the neighbour directly above this worst species
Generate new random values for these three species
Report the worst value of any species
If this worst value is higher than any worst value found in previous iterations,
update the best worst value found so far. Report the current best worst value.

end for
end

To apply the concepts of SOC to optimisation problems, it is necessary to define
a mapping between a fitness value and the structural components of a species.
Essentially, this puts back the details that Bak and Sneppen discarded in their
model. One such example is extremal optimisation and is discussed in detail next.



Extremal Optimisation for Assignment Type Problems 5

Fig. 2. Distribution of fitness values for a sample population of species in the Bak-
Sneppen model.
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3 Extremal Optimisation

Extremal optimisation is one of a number of emerging Nature inspired metaphors
for solving combinatorial and continuous optimisation problems. As it is relatively
new and unexplored, compared to other techniques such as ant colony optimisa-
tion (ACO) [13], genetic algorithms (GAs) [18] and particle swarm optimisation
(PSO) [22], there exists wide scope to test and to extend its capabilities. Unlike
its counterparts, the canonical algorithm manipulates a single solution rather than
a population of solutions. Additionally, it never converges as the single solution is
continually changing (see Section 5 for a demonstration of this).

EO is loosely based on the principles of the Bak-Sneppen model and simulates
the notion that some species flourish while others do not [6, 8, 10]. This form of
selection is also present at the genetic level. We can use a mapping between ‘genes’
(or species structural components) and ‘solution components’ to describe the gen-
eral operation of EO to combinatorial optimisation problems. Solution components
are the building blocks of the solution, some examples being an agent assigned to a
particular job for generalised assignment, or the inclusion of an item in a knapsack
for the knapsack problem. In the original version of the EO algorithm, at each iter-
ation, the component whose fitness is worst, would be replaced by another solution
component generated at random. In essence, however, this choice of always selecting
the worst component to modify leads to too greedy a search, and consequently its
performance was poor. Like other meta-heuristic algorithms, an element of random-
ness (in the form of probabilistic selection) was introduced. This became known as
τ−EO. Components are ranked from worst (rank 1) to best (rank n). The parameter
τ and the rank controls the selection probability for each solution component [8].
This is achieved using Equation 1. It is evident that lower ranks will receive larger
values than higher ranks.

Pi ∝ i−τ 1 ≤ i ≤ n (1)

Where:

i is the rank of the component,
Pi is the probability (Pi = [0, 1] when normalised) that component i is chosen
and
n is the number of components.

Values of τ close to or equal to zero produce a random search strategy. Con-
versely, allowing τ = ∞ gives the original EO algorithm. Algorithm 2 shows the
mechanics of a single τ−EO iteration.

Algorithm 2 A single τ−EO iteration. Note that vector P need only be
calculated once according to Equation 1.

Rank the solution components from worst to best
j = Select a ranked component using roulette wheel selection on normalised P
Assign xj a random (legal and different) value
end

This procedure is performed a fixed number of times or until a particular solution
quality is reached.
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3.1 Existing EO Applications

Compared to other recent meta-heuristics, particularly ACO and PSO, extremal op-
timisation has received relatively little attention. Below is a representative summary
of existing applications of EO.

Boettcher and Percus [6, 8] have described and carried out limited experimenta-
tion on the travelling salesman problem (TSP). However, more successful application
has been in graph (bi)partitioning [6] and the max-cut (spin glass) problems [8]. For
these at least, EO can locate optimal and near optimal solutions for the investigated
test cases and is comparable to other meta-heuristics.

Randall and Lewis [31] present an extended form of EO in which it is used as
a sub-ordinate heuristic by another meta-heuristic known as Evolutionary Popula-
tion Dynamics (EPD). Experiments on small multi-dimensional knapsack problem
instances showed that EO with EPD achieved equal or better results than EO on
almost all tests cases. The results using EO with EPD were also compared to tests
using a standard ant colony optimisation solver. EO with EPD was been found to
deliver near-optimal results faster than the existing ant colony algorithm.

Randall [29] has performed an initial investigation of EO for the generalised
assignment problem (GAP). In that paper a simple population model for EO was
presented along with a heuristic that altered solutions so as to reduce the amount of
their infeasibility (a process known as partial feasibility restoration). This heuristic
helped EO to produce very good quality solutions. In fact, both the canonical EO
and population versions were able to find statistically significantly better solutions
than a state-of-the-art ant colony system (ACS) implementation, a very efficient
meta-heuristic for this problem.

A variation of the bi-partitioning problem used for community detection is solved
using EO by Duch and Arenas [14]. Specifically, they use it to optimise the modu-
larity and to identify the communities of complex networks. However, as reported in
Xiaodong, Cunrui, Xiandong and Yanping [33], this implementation is sensitive to
the initial solution, prone to being trapped in local optima, and not yet competitive
with particle swarm optimisation.

Middleton [25] proposes a modification to standard EO that makes it better
capable of solving the Ising spin glass problem. This is referred to as jaded EO
and increases the fitness of a spin in proportion to the number of times it has been
flipped. Empirical results, in comparison to standard EO, show that it is significantly
better.

Beyond the applications to benchmark problems, some work has been done to
adapt the standard EO algorithm to dynamic combinatorial optimisation. As an
example, Moser and Hendtlass [26, 27] apply EO to a dynamic version of the com-
position problem. During the course of solving the problem with EO, it may undergo
a variety of transformations to its structure and/or data. Despite the EO solver not
being made aware of specific changes, it is able to adapt to them more readily than
a standard ACS solver. This, however, was the reverse for the static version of the
problem.

Moser and Hendtlass [28] propose an EO implementation for dynamic aircraft
landing. This problem consists of two related parts, namely determining the or-
der/permutation of planes to land on a single runway, and assigning landing times-
lots for the planes as they enter the horizon of air traffic control (but taking other
planes into account). The latter is a deterministic problem, so EO is used for the
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former. A set of K candidate solutions is generated, where K is the number of
aircraft on the horizon. Each of these is generated by swapping the landing orders
of two aircraft. These candidates are ranked according to how close the landing
times resemble the planes’ target times. A new solution is chosen according to EO’s
rules. The results showed that this EO implementation could outperform a range of
meta-heuristic applications.

Galski, de Sousa, Ramos and Muraoka [17] present an EO algorithm to find
the optimal design of a simplified configuration of a thermal control system for a
spacecraft platform. The objectives are to minimise the difference between target
and actual temperatures on radiation panels as well as to minimise battery heater
power dissipation. Using EO, two possible solutions were found. As the authors
combined both objectives into a single function, the designs were really only able to
satisfy the first objective. Future work will optimise both objectives using a Pareto
front approach.

Another novel application of the meta-heuristic is to the protein folding problem.
Shmygelska [32] implements a two stage process in which EO finds a good starting
solution, in terms of pairwise arrangements of amino acids, from which a local Monte
Carlo based search can find a refined solution. The results compare favourably with
a known random search technique specific to this problem.

EO has also been adapted to solve continuous optimisation problems by Zhou,
Bai, Cheng and Wang [34]. This implementation concentrates on the Lennard-Jones
clustering problem. EO is used as a global optimiser, selecting probabilistic worst
components (or “atoms”) to change and then using a gradient based local search
to improve the solution. The difficulty is that their approach does not scale well.
Nevertheless, it is competitive with other heuristic methods for smaller problems.

It is clear from the above survey that to date EO has really only been applied
to problems that are relatively unconstrained. The mechanics of the algorithm, par-
ticularly those concerned with giving a solution component a new random value,
make it difficult for EO to naturally process more constrained problems. One class
of such problems, the assignment type problems (discussed next), contain a range of
interesting real-world constraints (such as capacity and group related constraints).
In light of this, the extensions of the EO paradigm proposed in this chapter will
allow it to be more widely and generally applicable.

4 Assignment Type Problems

“Assignment Type Problems” (ATPs) [12] are a collection of optimisation prob-
lems for which a number of items are to be assigned to groups subject to a set of
resource/capacity constraints. They include the generalised assignment, bin pack-
ing and capacitated hub location problems to name a few. These three problems are
broadly representative of ATPs and will form the test problems for the experimental
work within this chapter. Brief descriptions of each follow:

• Generalised Assignment Problem – The generalised assignment problem [24] is a
problem in which jobs are assigned to agents for these agents to perform subject
to capacity constraints. Each job may be performed by one agent only. The aim
is to minimise the total cost of assigning the jobs to the set of agents.
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• Bin Packing Problem (BPP) – The bin packing problem has different variations.
The one considered here is the standard one-dimensional version [21]. A set of
items, each of which has a particular weight, is packed into a number of bins.
Each bin has the same weight capacity. Two objective functions are possible,
both of which are used in this chapter. The first is used in Section 5 and treats
bin packing as a constraint satisfaction problem in which the total amount of
excess weight for a fixed number of bins, is minimised. The second is used in the
remainder of the chapter and explicitly minimises the number of bins.

• Capacitated Single Allocation Hub Location Problem (CSAHLP) – The CSAHLP
belongs to a general class of hub and spoke problems for which the aim is to
efficiently transfer large quantities of commodities (such as passengers, mail and
telecommunication traffic) between each node pair of a network. A subset of the
nodes (called hubs) act as consolidation centers for bulk transfers. The CSAHLP
is a difficult variant of this problem in which the number of hubs is not fixed,
and each hub has a limited flow capacity. The mathematical formulation of it
may be found in Equations 6 – 14 of Randall [30]. Furthermore, this paper
describes a number of generic support heuristics (such as node-to-hub allocation
and feasibility restoration). These will be used in our enhanced version of EO.

5 A Detailed Examination of EO on Bin Packing

As previously mentioned, EO is a relatively new heuristic under-explored compared
to many others. Despite using a seemingly simple move mechanism, the following
step-by-step analysis reveals that it does not always bias towards the most favourable
solutions. An archetypal example of an assignment problem, bin packing, is used to
demonstrate this behaviour. This is solved as a constraint satisfaction problem, in
which the amount of excess weight in the bins is to be minimised, with zero being
considered optimal.

EO changes its solution in a series of moves with the single solution moving
through problem space. At any time there are a series of legal moves available to
it. The move that is made is one that pushes away from the current position by
randomly altering a poor component of the current solution. The direction in which
the push takes the solution is random, but by always altering bad component values.
The long term trend is towards better solutions (ones with lower constraint violation)
but in a very non-monotonic way.

In terms of bin packing, EO will select one overfull bin and randomly take one
item from that bin and transfer it to another randomly chosen bin. If the total
amount of excess weight in all the overfilled bins is thus reduced this might be
referred to as a good move, if the total amount of excess weight is increased this is a
bad move (the occasional moves in which the total of excess weight does not change
may be referred to as a neutral move). For the problem u120 00 [5, 16], checking
all possible moves that could be made at each point of a thousand step search5

5 All the figures in this section are based on the results from one hundred indepen-
dent repeats, each consisting of one thousand actual moves (sufficient to allow
stagnation to occur if it is going to occur). At each actual move either all possible
legal moves or one thousand random test moves are trialled but then reversed
after the data have been collected for the statistics.
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through the problem space shows the ratio of good to bad moves to be 0.51 to 1.
If on the other hand the bin from which an item is to be removed may be chosen
probabilistically from the N available bins (ranked from worst to best), then the
probability of choosing bin n is

Pn =

(
R

(
wn∑N

i=1
wi

))−τ
where wi is the weight of bin i, R is the ranking function and τ , the only user
specified parameter for EO, determines how much the algorithm concentrates on
the most overfilled bins. If τ is set to 1 then overfull bins are treated equally. If τ
is set to 1.4 as recommended in Boettcher and Percus [9] the good to bad ratio is
changed to 1.17 to 1.

Knowing the ratio of good to bad moves is only part of the picture, one also needs
to know how good and how bad these moves might be. Figure 3 shows histograms of
both the good and bad moves for EO. Note that the distributions of the two types
of moves are very different. The bad moves are worse (on average) than the good
moves are good.

Fig. 3. Histograms of good (left) and bad (right) moves available to EO.

For comparison, consider the choices available to two other algorithms, random
hill climbing and a genetic algorithm on this same problem.

Random hill climbing also uses a single solution and creates an endless series of
random candidate solutions, and, with a certain probability, a candidate solution
replaces the current solution if it is better (i.e., has fewer constraint violations).
The replacement probability should be between 0.5 and 1, the higher this figure the
greedier the algorithm. For u120 00 and a probability of 1, the ratio of good possible
moves to bad possible moves is 0.08 to 1. Figure 4 shows the histograms of the good
and bad moves for a replacement probability of 1 (i.e., always replace if better). The
low number of good moves (cf. the number of bad moves) means that few changes
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are kept and that the time taken to find the relatively small sequence of good moves
necessary to climb a local optimum may be high.

Fig. 4. Histograms of good (left) and bad (right) moves available to random hill
climber.

A genetic algorithm uses a population of solutions and builds new solutions by
combining parts of existing solutions together with some mutation. For the results
quoted here, two parents are used and selected by a simple tournament between two
candidates, with a probability of 0.7 of choosing the fittest candidate as a parent.
Using single point crossover between the two parents with a probability of 0.1 of
randomly moving one item in the solution to another bin (mutation), the ratio of
good to bad moves for u120 00 is 5.7 to 1. Figure 5 shows the histograms of these
good and bad moves. The high ratio of good to bad moves means that a GA will
have the least trouble of the three algorithms considered in putting together the
sequence of good moves to find a good quality solution.

Figures 6, 7 and 8 show the relative proportion of good, bad and neutral moves
available at each of the thousand steps that make up a single run of each algorithm.
Figure 6 shows that the relative prevalence of these moves for EO does not vary
markedly during the run, while Figure 7 shows that the random hill climber initially
has many good moves available but rapidly stagnates in a local suboptimal position.
Initially the GA has many good moves available but then stagnates. There follows
a cyclic series of steps. At each step an increasing number of good moves become
available as more of the population climb a (probably) suboptimal peak. There
is then a period of stagnation ending with a sudden breakthrough as progress is
made towards a better (but probably still sub-optimal) peak after which the cycle
repeats. With each breakthrough the fitness of the local sub-optimal peak improves
so that the probability of another breakthrough decreases (i.e., the time between
breakthroughs increases).

Considering that it will take a number of good moves in succession – a number
that depends on how large each of the good moves is – it is clear that the probability
of this occurring is far higher for EO (with the good to bad ratio of 1.17:1) than
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Fig. 5. Histograms of good (left) and bad (right) moves available to a genetic
algorithm.

Fig. 6. Relative availability of good, bad and neutral moves during a run of EO.

with random hill climbing (0.08:1) except in the early stages of the search. A genetic
algorithm has more good moves available with an overall average of 5.2:1, a ratio
that is far higher for some short periods. What is in favour of using EO is the fact
that, unlike the other two (greedier) algorithms, it does not reach one (or cycle round
a series of) local sub-optimal position(s) and then stagnate (forever in the case of
the random hill climber or until a fortuitous breakthrough occurs for the genetic
algorithm). EO’s single solution never stagnates but continually moves in problem
space as is evidenced by the fact that the good to bad ratio is consistent during the
run.

Figure 9 shows that EO very rarely revisits previously explored positions, unlike
the other two algorithms. The low probability of EO constructing a series of good
moves means that EO should not be expected to work well if run alone. The fact
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Fig. 7. Relative availability of good, bad and neutral moves during a run of random
hill climber.

Fig. 8. Relative availability of good, bad and neutral moves during a run of a genetic
algorithm.

Fig. 9. The number unique places visited by each algorithm during 1000 steps. The
histograms are built from the results of 1000 independent repeated runs.
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that it does not stagnate suggests that it would be a good component of a meta
algorithm that:

• contains another element that can lift the good to bad ratio so that EO will be
driven further up local peaks (as long as this does not also inhibit EO’s ability
to migrate endlessly through problem space), and

• runs other, more local, search algorithms in collaboration with EO, primarily
relying on EO to find regions of interest for these other techniques to explore
more fully.

An endless series of random solutions would show a very low probability of
revisiting the same place in problem space in any reasonable length run and one
must ask what advantage there is in using EO over a series of fully random solutions.
The answer lies in the average quality of the places in solution space visited by the
two. Table 1 shows that there is a clear difference in the average quality of the
start points each algorithm would provide for other, more local, search algorithms
while Figure 10 shows how the fitness varies during a typical run. Although the
ratio of the fitnesses is only a little over 2, if fitness was to be graphed against
the number of solutions with each fitness value, an inverse bell shaped distribution
would be produced. If the number of solutions with this or worse fitness is considered,
extremal optimisation is ahead by orders of magnitude.

Random Moves Extremal Optimisation

Average fitness 1833.3 783.6

Table 1. Average fitness of a thousand moves. As this is a minimisation problem,
the smaller value obtained by EO is better.

The discussion above has been written using data obtained from runs attempting
to solve a bin packing problem. A similar series of runs, this time using a graph
colouring problem, exhibit similar behaviour. This indicates that the observations
made are predominantly a result of the behaviour of the algorithms used and not
so much of the problems themselves. Thus the observations might be expected to
substantially hold for a wide range of assignment problems.

6 Applying EO to ATPs

The previous section showed the performance of canonical EO on one of the test
problems. EO was capable of exploring search space nearly without revisiting pre-
vious solutions. However, the results were not of an acceptable standard. Too many
of the potential moves lead to poor quality solutions. Consequently, the level of con-
straint violation (for that particular version of bin packing) was such that feasible
solutions could not be easily produced. Given these results and the fact that there
has been relatively little application of EO to combinatorial problems, there exists
scope to extend it while still retaining its fundamental characteristics. This section
describes modifications and enhancements to EO that make it better able to solve
assignment type problems.
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Fig. 10. The fitness of the single solution during the steps of the EO algorithm
(lower trace) compared with one thousand randomly chosen solutions. Note the
upper trace is not that of a random hill climber.

There are three important elements that EO potentially needs to help it become
competitive with more established meta-heuristics. These are a) transition operators
and constraint handling techniques, b) a population framework and c) local search.

6.1 Transition Operators and Constraint Handling

The related topics of of transition operators and constraint handling within meta-
heuristic search algorithms have been much discussed and explored in the literature.
Three broad methods of constraint handling have often been applied:

1. Use a penalty approach – Penalise the objective value according to the amount
of overall constraint violation.

2. Allow the solver to search across feasible and infeasible space – Report the best
feasible solution at the end of the search.

3. Restore feasibility – Using a special purpose algorithm to transform an infeasible
solution to a feasible one.

Method 1 has been used in many meta-heuristic implementations with mixed
success. The major difficulty is to determine the best form and weightings of the
penalties. A recent penalty based EO [19] showed that it is nearly, but not quite,
competitive with state-of-the-art heuristics.

Methods 2 and 3, however, can easily be applied to EO, with Method 2 par-
ticularly taking advantage of the natural EO algorithm (as shown in Randall and
Lewis [31] and Randall [29]). As EO only makes a small change at each iteration
– allowing many transitions to be made in a computationally reasonable time – it
may not matter that the solution is feasible at all times. Overall, many feasible so-
lutions will be potentially produced depending on the difficulty of the constraints.
Increasing the proportion of feasible solutions may be accomplished by the use of



16 Marcus Randall, Tim Hendtlass, and Andrew Lewis

the partial feasibility restoration algorithm (discussed next). At each iteration of the
algorithm, the feasibility status of the solution is determined. The choice of solution
component, using EO’s rules, is as follows for two of the test problems:

• A feasible solution – An EO move is performed to optimise the objective function.
A move changes a poor solution component value to a random one. For the GAP,
a poor assignment of an agent to a job is replaced by the assignment of that
job to a random agent. However, for the BPP, the objective is to minimise the
number of groups, therefore a random item is taken from a relatively small sized
bin and reassigned to a random one.

• An infeasible solution – The focus changes to moving the solution back to a
feasible state. As such, a component value to change is chosen according to the
amount of infeasibility it contributes to the solution. This will vary from problem
to problem. The specifications for each problem are:
– GAP: This is given as the amount of resources required for a job assigned to

an agent. Only overloaded/infeasible agents are examined. The job assign-
ments with resource requirements that most closely match the the amount
of agent infeasibility are more likely to be chosen.

– BPP: A light item from an overfull bin is most likely to be selected. This is
the case as it is easier to move light items to fill the spare capacity of other
bins. A number of such moves will decrease its infeasibility.

The CSAHLP is a different matter. Based on the work of Randall [30], there
exists a node allocation heuristic and feasibility restoration algorithm. The former
will best allocate non-hub nodes to hub nodes. If this fails, the latter will restore
feasibility.

Partial Feasibility Restoration

It may take a considerable number of EO iterations to move from infeasible space
to feasible space using the methods mentioned above. To effectively make use of the
available EO iterations, a general purpose heuristic can be developed to reduce the
amount of infeasibility of a solution (the prototype for which is given in Randall [29]).
Partial feasibility restoration is a simple, non-degenerative, parameter-free process.
In some ways, it resembles standard local search, except it tries to minimise infeasi-
bility rather than optimise the problem’s objective. It is represented by Algorithm 3.
Note that it is applicable across ATPs and does not guarantee that a feasible state
will result. It is an O(MN) algorithm where M is the number of groups, and N is the
number of items. This algorithm will be used for the GAP and BPP. As mentioned
previously, CSAHLP uses its own full feasibility restoration algorithm.

The amount of contribution of infeasibility of an item within a group is, naturally
enough, calculated differently for different problems. In the case of BPP, it is an
item whose weight most nearly matches the amount of overloading for a bin. For
the GAP, the item is simply the one whose resource requirement covers the amount
of the agent’s infeasibility.

6.2 A Population Model

A simple population extension mechanism to EO was presented by Randall [29].
In it, a fixed number of solutions/individuals form a population. At preset inter-
vals throughout the execution of the search, a population interaction would occur.
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Algorithm 3 Generalised partial feasibility restoration for assignment type
problems.

for all groups do
if this group is infeasible then

Determine the item within the group whose resource requirement most closely
matches the group’s amount of infeasibility
Find a new group that can take this item without itself becoming infeasible
if such a group exists then

Update the solution, its cost (if any) and the amount of its infeasibility
else

Do nothing
end if

end if
end for

This interaction identified the worst member of the population (as measured by
the objective function) and deleted it. Besides it, the two nearest neighbours (in
terms of common solution component values) were also removed in accordance to
the Bak-Sneppen model. Three new solutions were randomly generated, added to
the population, and the search resumed.

While the above approach produced statistically significantly superior results
to a standard implementation on GAP instances, its main drawback was that it
required the user to specify the number of times interactions would occur throughout
the search process. It would be better if the system could calculate this information
for itself based on dynamic information about the search.

As EO does not converge, solution similarity between the population members
would not be a natural cause to trigger an interaction. It is better to look for a
population in which solution qualities widely diverge. This indicates that the least
fit members should be eliminated. The equivalent in Nature would be a cull of the
weak of a population so as to maximise the overall chances of a species’ survival. The
probability that an interaction will occur at an iteration can be calculated according
to Equation 2. Note as well that the probability increases as the iterations pass since
the last population interaction.

p =

(
1− cost(best)

cost(worst)

)1/l

(2)

Where:

l is the number of iterations since the last population interaction occurred.

In terms of the solution replacements, a small augmentation of Randall [29] is
proposed here. Instead of replacing all three solutions (i.e., the worst solution and
its two closest neighbours) with random solutions, one of these is now a copy of the
best found solution. This balances the need for diversity of solutions against that
of exploration around the best (known) solution. Again, as EO does not converge,
there is no danger of creating a population of similar, stagnating solutions. Rather,
it will allow EO to search more extensively in good neighbourhoods.
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6.3 Local Search

Meta-heuristic search algorithms, on the whole, are capable of coarse grain search. In
essence, they provide very good starting points for fine grained searching known as
local search. This point was demonstrated for EO in Hendtlass and Randall [20]. As
such, local search is solely driven toward optimising the objective function, moving
only in feasible space, and making purely greedy moves. However, it is useful for
obtaining locally optimal solutions, which standard EO does not guarantee. Local
search can be performed each time a feasible solution is produced.

The details of the local search implementation for each problem is given below.

• BPP – The algorithm of Alvim, Aloise, Glover and Ribeiro [1] (as reported in
Levine and Ducatelle [23]) initially determines the two least loaded bins. The
items from these are moved to a “free list”, and the bins removed. Three types
of exchange operations are attempted. In the first, two items from the free list
are exchanged with two items from a bin (subject to the capacity constraint
being satisfied). This process is repeated for all bins and this is attempted for
combinations of two bin items for one free item and then one bin item for one
free item. After this, all free items that can be fit into existing bins have been.
A new bin is created with the left over items. The aim of this procedure is to
reduce the number of overall bins by at least one. Even though this algorithm
is designed for the BPP, it can equally be applied to problems such as graph
colouring. A more detailed description of the algorithm (as well as an example)
can be found in Levine and Ducatelle [23].

• GAP – Two effective operators [29] will be used. “Move” moves an item from
one agent to another. The job and agent are chosen such that the (negative)
change in the objective function is the greatest. This is a variable length search
stopping when an improving move cannot be found. “Swap” works in a similar
way except that at each iteration, two items are chosen such that their swap will
lead to the most improvement in the objective function.

• CSAHLP – There are six local search operators that are appropriate for the
CSAHLP [15]. Note that some of the operators discussed below are described in
terms of ‘clusters’. A cluster refers to a group of nodes that are all assigned to
a particular hub.

1. Relocate Node – A node is reassigned to a different hub.
2. Swap Nodes – Two nodes swap the clusters to which they belong.
3. Create a New Cluster – A non-hub node is made a hub node. No nodes (apart

from itself) are assigned to this new hub.
4. Split a Cluster – Half of the nodes of a cluster are reassigned to a new cluster.

A node from the new cluster is chosen as the hub.
5. Merge Clusters – Two clusters are merged into one. The hub node of one of

the clusters becomes the hub node of the new, enlarged cluster.
6. Relocate Hub – The hub of a cluster is reassigned to another node.

According to Randall [30], the most effective way to apply these operators, at
each (EO) iteration, is to first randomly order the transition operators in a list.
Each operator is applied, attempting all possible transitions, and all improving
moves are kept. This process is continued until an improving move cannot be
produced by any of the operators.
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7 Computational Experiments

In this section, the effectiveness of EO, along with its support heuristics and popu-
lation model, is evaluated on benchmark GAP, BPP and CSAHLP problems.

The test problem instances are drawn from three benchmark sets from the lit-
erature:

• GAP – These are the large-sized set of Chu and Beasley [11]. They have also
been used in the study by Randall [29].

• BPP – The test set of problems from the OR-Library [5] are used. These range
in size from 120 to 500 items.

• CSAHLP – These instances are from the benchmark set proposed by Ernst and
Krishnamoorthy [15]. A fuller explanation of these problems can be found in
Randall [30].

The computing platform used to perform the experiments is a 3GHz Pentium 4
based PC. Each problem instance is run across ten random seeds. The experimental
programs are coded in the C language and compiled with gcc.

Each problem instance is allowed to run for 500000 iterations. Two sets of results
are generated, one for the single solution version and one for the population vari-
ant. In terms of the population approach, the total number of iterations is divided
amongst the population members, rather than being that number of generations.
This helps to ensure a fairer comparison with the single EO versions.

The two other parameters that need to be set are τ and the population size.
A value of 1.4 is used for τ as this has been found to give good quality results in
a number of previous studies [9, 20, 29, 31] and balances the need for exploration
with that of exploitation. Twenty individuals constitute a population in these ex-
periments. However, further investigation will explore the effect of different values
of both these parameters.

Tables 2, 3 and 4 show the results for GAP, BPP and CSAHLP respec-
tively. The results are expressed as relative percentage deviations (RPD) from the
optimal/best-known cost, i.e., RPD = cost

optimal
× 100. Thus a result of 0 corre-

sponds to the optimal/best-known cost. “min”, “med” and “max” denote minimum,
medium and maximum respectively.
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Table 2. The single and population results for the GAP. Note that the first number
in the problem name (first column) represents the number of agents while the second
is the number of jobs. For instance, ‘A5-100’ is of Type A with 5 agents and 100
jobs. The single results are reproduced from Table 2 (last set) of Randall [29].

Single Population
Name Optimal min med max min med max

A5-100 1698 0 0 0 0 0 0
A5-200 3235 0 0 0 0 0 0
A10-100 1360 0 0 0 0 0 0
A10-200 2623 0 0 0 0 0 0
A20-100 1158 0 0 0 0 0 0
A20-200 2339 0 0 0 0 0 0
B5-100 1843 0.71 1.03 1.41 0 0.3 0.33
B5-200 3553 0.42 0.48 0.56 0.06 0.07 0.2
B10-100 1407 0 0 0 0 0 0
B10-200 2831 0.6 0.76 1.02 0 0.11 0.18
B20-100 1166 0.09 0.17 0.26 0 0 0.09
B20-200 2340 0.17 0.21 0.26 0 0.11 0.21
C5-100 1931 0.36 0.6 0.78 0 0.05 0.31
C5-200 3458 0.29 0.52 0.67 0 0.04 0.14
C10-100 1403 0.71 1.1 1.28 0.07 0.14 0.29
C10-200 2814 0.46 0.82 1.03 0 0 0.21
C20-100 1244 0.72 1.05 1.13 0 0.08 0.32
C20-200 2397 0.92 1.17 1.29 0 0 0.13
D5-100 6373 1.37 1.54 1.65 0.25 0.45 0.69
D5-200 12796 1.52 1.63 1.71 0.12 0.27 0.61
D10-100 6379 2.15 2.56 2.76 0.49 0.74 1.47
D10-200 12601 1.24 1.54 1.6 0 0.04 0.13
D20-100 6269 2.14 2.47 2.58 0.33 0.45 1.36
D20-200 12452 1.55 1.69 1.81 0 0.17 0.48
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Table 3. The single and population results for the BPP. Note that the problem
name (first column) indicates the number of items. For instance, u120 00, is the
first problem of the set of problems that have 120 items in each.

Single Population
Name Optimal min med max min med max

u120 00 48 0 0 2.08 0 0 0
u120 01 49 0 0 0 0 0 0
u120 02 46 0 0 0 0 0 0
u120 03 49 0 2.04 4.08 1.02 2.04 2.04
u120 04 50 0 0 0 0 0 0
u120 05 48 0 0 0 0 0 2.08
u120 06 48 0 0 2.08 0 0 2.08
u120 07 49 0 0 0 0 0 0
u120 08 51 0 0 1.96 0 0 0
u120 09 46 0 1.09 2.17 0 2.17 2.17
u120 10 52 0 0 0 0 0 0
u120 11 49 0 0 2.04 0 0 0
u120 12 48 0 2.08 2.08 0 2.08 2.08
u120 13 49 0 0 0 0 0 0
u120 14 50 0 0 0 0 0 0
u120 15 48 0 0 2.08 0 0 0
u120 16 52 0 0 1.92 0 0 0
u120 17 52 0 0 5.77 0 1.92 1.92
u120 18 49 0 0 0 0 0 0
u120 19 50 0 0 2 0 0 0
u250 00 99 0 0.51 1.01 0 1.01 1.01
u250 01 100 0 0 1 0 0 1
u250 02 102 0 0.49 0.98 0 0.98 0.98
u250 03 100 0 0 0 0 0 1
u250 04 101 0 0 0.99 0 0.99 0.99
u250 05 101 0 0.99 1.98 0.99 0.99 1.98
u250 06 102 0 0 0 0 0 0
u250 07 104 0 0 3.85 0 0 0
u250 08 105 0.95 0.95 0.95 0.95 0.95 1.9
u250 09 101 0 0.99 2.97 0.99 0.99 0.99
u250 10 105 0 0 1.9 0 0.95 0.95
u250 11 101 0.99 0.99 0.99 0.99 0.99 0.99
u250 12 106 0 0 0.94 0 0 0.94
u250 13 103 0 0 0.97 0 0 0.97
u250 14 100 0 0 1 0 1 1
u250 15 105 0.95 0.95 3.81 0.95 1.9 1.9
u250 16 97 0 0 3.09 1.03 1.03 1.03
u250 17 100 0 0 1 0 0 0
u250 18 100 1 1 1 1 1 1
u250 19 102 0 0 0.98 0 0 0.98
u500 00 198 0.51 0.51 2.53 0.51 1.01 1.01
u500 01 201 0.5 0.5 0.5 0.5 1 1
u500 02 202 0 0.5 0.99 0.5 0.74 0.99
u500 03 204 0.49 0.49 1.47 0.98 0.98 0.98
u500 04 206 0 0.49 1.94 0.49 0.49 0.97
u500 05 206 0 0.97 2.91 0.49 0.73 0.97
u500 06 207 0.48 0.72 1.45 0.97 0.97 1.45
u500 07 204 0.49 1.23 3.43 0.98 1.47 1.96
u500 08 196 0 0.26 1.02 0.51 0.51 1.02
u500 09 202 0 0 0.5 0 0.5 0.99
u500 10 200 0 0.5 0.5 0.5 0.5 1
u500 11 200 0.5 0.5 3 0.5 1 1.5
u500 12 199 0.5 0.5 1.01 0.5 1.01 1.01
u500 13 196 0 0.51 1.53 0 0.51 0.51
u500 14 204 0.49 0.49 8.33 0.49 0.49 0.98
u500 15 201 0.5 0.5 0.5 0.5 0.5 1
u500 16 202 0 0 0.99 0 0.5 0.5
u500 17 198 0.51 0.51 0.51 0.51 1.01 1.01
u500 18 202 0 0.5 1.98 0.99 1.49 1.49
u500 19 196 0.51 0.51 1.02 0.51 1.02 1.53
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Table 4. The single and population results for the CSAHLP. Note that the problem
name indicates the number of nodes in the instance. The cost of 50TT corresponds
only to the best known cost. For this problem, the single version of the algorithm
could only generate solutions in two of its runs, while the other eight could not
generate feasible solutions at all.

Single Population
Name Optimal min med max min med max

10LL 224250.1 0 0 0 0 0 0
10LT 250992.3 0 0 0 0 0 0
10TL 263399.9 0 0 0 0 0 0
10TT 263399.9 0 0 0 0 0 0
20LL 234691 0 0 0 0 0 0
20LT 253517.4 0 0 0 0 0 0
20TL 271128.2 0 0 0 0 0 0
20TT 296035.4 0 0 0 0 0 0
25LL 238978 0 0 0 0 0 0
25LT 276372.5 0 0 0 0 0 0
25TL 310317.6 0 0 0 0 0 0
25TT 348369.2 0 0 0 0 0 0
40LL 241955.7 0 0 0 0 0 0
40LT 272218.3 0 0 0 0 0 0
40TL 298919 0 0 0 0 0 0
40TT 354874.1 0 0 0 0 0 0
50LL 238520.6 0 0 0 0 0 0
50LT 272897.5 0 0 0 0 0 0
50TL 319015.8 0 0 0 0 0 0
50TT 417441 0 0 0 0 0.06 0.41

As reported in Randall [29], the single solution results in Table 2 were statis-
tically better than a state-of-the-art ACO implementation. In all cases, however,
the population approach for the GAP was able to find equivalent or better quality
results for all problem instances. The new population results are also superior to
the previous population results [29]. This may be attributed to the new model’s
feature of allowing more concentrated search around best found solutions. This is
only practicable because EO will not converge on these solutions again – as would
be the case for other meta-heuristics.

For both the single and population versions of EO for bin packing, the algorithms
could achieve very good quality results, being at most a few percent away from the
optimal results. Unlike the GAP, there is no clear distinction between the single
and population results for the minimum results. However, the population version’s
maximum is less deviant than the other as it is always at most two percent away from
the optimal result. These results are very comparable to the ACO implementation
of Levine and Ducatelle [23].
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The performance of EO on CSAHLP in comparison to ACO [30] was more or
less equivalent. Both methods required relatively few iterations to achieve optimal
solutions. Much of this may be attributed to the powerful local search heuristics.
However, as noted in Randall [30], ACO (and therefore EO) provide a powerful
coarse grain optimisation framework. This is evidenced by the fact that a random
descent heuristic could not achieve the same level of results. Additionally, the work
by Hendtlass and Randall [20] has shown, for bin packing, that pure local search ex-
tensions to EO are necessary to produce competitive computational results, despite
the computational costs these may incur.

8 Conclusions

EO is a relatively new and simple meta-heuristic that is based on the elimination
of poorly performing solution components, rather than the explicit incorporation of
necessarily good values. As such it does not converge on certain solutions, giving
it some advantages over more traditional meta-heuristics such as GAs and ACO.
However, application of the canonical algorithm will often lead to relatively poor
performances, this having been demonstrated in this chapter with the bin packing
problem (Section 5). In order to lift performance so that EO becomes comparable
with other algorithms requires additional support heuristics. Generalised algorithms
have been proposed herein that can handle constraints, partially restore feasibility
and create and maintain a population of solutions. These combined with local search
have indeed shown that EO is capable of producing very good quality solutions.

An area that we are currently investigating is concerned with the management of
populations. One of the key questions is that of population size. It may be possible
to allow the population to shrink or grow according the progress of the search.
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